ANNOUNCEMENT

NMR Nomenclature: Nuclear Spin Properties and Conventions for Chemical Shifts—IUPAC Recommendations

Scientific advances are facilitated by the international adoption of standardised notation and by the establishment of accurate numerical values for many physical quantities. The body charged with oversight of these areas for chemists is the International Union of Pure and Applied Chemistry (IUPAC). Its first attempts at standardisation of NMR data appeared (1, 2) in the 1970s. These publications established the conventions for chemical shifts and generally have stood the test of time. The famous "Green Book" titled *Quantities, Units and Symbols in Physical Chemistry* (3) contains, *inter alia*, a table of the

properties of all the known nuclides. Recently, the IUPAC has turned its attention again to NMR and has issued six new sets of recommendations, (4-9), all published in the IUPAC journal *Pure and Applied Chemistry*. Three of these (4-6) deal with computerized databases and representation of pulse sequences. One recommends (7) NMR parameters and symbols to be used in publications.

Reference (8), which is described here, updates the recommendations with regard to chemical shifts. It discusses the methods of referencing spectra and recommends that shifts of *all*

	Natural abundance	Magnetic moment	Magnetogyric ratio	Frequency ratio	Reference	Sample	Relative r	eceptivity
Isotope	(<i>x</i> /%)	$(\mu/\mu_{\rm N})$	$(\gamma/10^7 \text{rad s}^{-1} \text{ T}^{-1})$	$(\Xi/\%)$	compound	conditions	D^{p}	D^{C}
^{1}H	99.9885	4.837 353 570	26.7522128	100.000 000	Me ₄ Si	$CDCl_3, \varphi = 1\%$	1.000	5.87×10^3
³ H	_	5.159714367	28.5349779	106.663 974	Me_4Si-t_1	See lit.	_	
³ He	1.37×10^{-4}	-3.685154336	-20.3801587	76.179437	He	Gas	$6.06 imes 10^{-7}$	3.56×10^{-3}
¹³ C	1.07	1.216613	6.728284	25.145 020	Me ₄ Si	$CDCl_3, \varphi = 1\%$	$1.70 imes 10^{-4}$	1.00
¹⁵ N	0.368	-0.49049746	-2.71261804	10.136767	MeNO ₂	Neat/CDCl ₃	$3.84 imes 10^{-6}$	2.25×10^{-2}
¹⁹ F	100	4.553 333	25.18148	94.094011	CCl ₃ F	See lit.	0.834	4.90×10^{3}
²⁹ Si	4.6832	-0.96179	-5.3190	19.867 187	Me ₄ Si	$CDCl_3, \varphi = 1\%$	$3.68 imes 10^{-4}$	2.16
³¹ P	100	1.95999	10.8394	40.480742	H ₃ PO ₄	See lit.	$6.65 imes 10^{-2}$	3.91×10^2
⁵⁷ Fe	2.119	0.1569636	0.8680624	3.237 778	Fe(CO) ₅	C_6D_6	7.24×10^{-7}	4.25×10^{-3}
⁷⁷ Se	7.63	0.92677577	5.125 3857	19.071 513	Me ₂ Se	Neat/C ₆ D ₆	$5.37 imes 10^{-4}$	3.15
⁸⁹ Y	100	-0.23801049	-1.3162791	4.900 198	$Y(NO_3)_3$	H ₂ O/D ₂ O	$1.19 imes 10^{-4}$	0.700
¹⁰³ Rh	100	-0.1531	-0.8468	3.186 447	$Rh(acac)_3$	CDCl ₃ , sat.	$3.17 imes 10^{-5}$	0.186
(¹⁰⁷ Ag)	51.839	-0.196 898 93	-1.0889181	4.047 819	AgNO ₃	D_2O , sat.	3.50×10^{-5}	0.205
¹⁰⁹ Ag	48.161	-0.22636279	-1.251 8634	4.653 533	AgNO ₃	D_2O , sat.	$4.94 imes 10^{-5}$	0.290
(¹¹¹ Cd)	12.80	-1.0303729	-5.6983131	21.215 480	Me ₂ Cd	Neat	1.24×10^{-3}	7.27
¹¹³ Cd	12.22	-1.0778568	-5.9609155	22.193 175	Me ₂ Cd	Neat	1.35×10^{-3}	7.94
(¹¹⁵ Sn)	0.34	-1.5915	-8.8013	32.718749	Me ₄ Sn	Neat/C ₆ D ₆	1.21×10^{-4}	0.711
(¹¹⁷ Sn)	7.68	-1.73385	-9.58879	35.632259	Me ₄ Sn	Neat/C ₆ D ₆	3.54×10^{-3}	20.8
¹¹⁹ Sn	8.59	-1.81394	-10.0317	37.290 632	Me ₄ Sn	Neat/C ₆ D ₆	4.53×10^{-3}	26.6
(¹²³ Te)	0.89	-1.276431	-7.059098	26.169742	Me ₂ Te	Neat/C ₆ D ₆	1.64×10^{-4}	0.961
¹²⁵ Te	7.07	-1.5389360	-8.5108404	31.549769	Me ₂ Te	Neat/C ₆ D ₆	$2.28 imes 10^{-3}$	13.4
¹²⁹ Xe	26.44	-1.347494	-7.452103	27.810186	XeOF ₄	Neat	5.72×10^{-3}	33.6
^{183}W	14.31	0.204 009 19	1.128 2403	4.166387	Na ₂ WO ₄	D ₂ O, 1 M	1.07×10^{-5}	6.31×10^{-2}
¹⁸⁷ Os	1.96	0.1119804	0.6192895	2.282 331	OsO ₄	CCl ₄ , 0.98 M	2.43×10^{-7}	1.43×10^{-3}
¹⁹⁵ Pt	33.832	1.0557	5.8385	21.496784	Na ₂ PtCl ₆	D ₂ O, 1.2 M	3.51×10^{-3}	20.7
¹⁹⁹ Hg	16.87	0.87621937	4.8457916	17.910 822	Me ₂ Hg ^a	Neat	1.00×10^{-3}	5.89
$(^{203}T1)$	29.524	2.809 833 05	15.5393338	57.123 200	$T1(NO_3)_3$	See lit.	$5.79 imes 10^{-2}$	3.40×10^2
²⁰⁵ T1	70.476	2.837 470 94	15.692 1808	57.683 838	T1(NO ₃) ₃	See lit.	0.142	8.36×10^2
²⁰⁷ Pb	22.1	1.00906	5.58046	20.920 599	Me ₄ Pb	Neat/C ₆ D ₆	2.01×10^{-3}	11.8

TABLE 1The Spin Properties of Spin-1/2 Nuclei

Note. Taken from *Pure Appl. Chem.* **73**, 1795 (2001). © IUPAC 2001 Full text at http://www.iupac.org/publications/pac/2001/7311/7311x1795.html. ^{*a*} Highly toxic. Do not handle directly. Some other reference compounds are toxic. The unified scale should always be used in these cases.

	Nu
	oolar
	adrug
.E 2	fQui
[AB]	les of
Ľ	perti
	Pro

					The Spin Proj	perties of Qué	adrupolar Nuclei				
		Natural abundance	Magnetic moment	Magnetoøvric ratio	Quadrupole	Frequency ratio	Reference	Sample	Line-width	Relative re	ceptivity
Isotope	Spin	(x/%)	(η/η)	$(\gamma/10^7 \text{rad s}^{-1} \text{ T}^{-1})$	(Q/fm^2)	$(\Xi/\%)$	sample	conditions	factor(ℓ/fm^4)	D^{p}	D^{C}
$^{2}\mathrm{H}$	1	0.0115	1.212 600 77	4.10662791	0.2860	15.350 609	(CD ₃) ₄ Si	CDCl ₃ $\varphi = 1\%$	0.41	1.11×10^{-6}	$6.52 imes 10^{-3}$
6Li	1	7.59	1.1625637	3.937 1709	-0.0808	14.716086	LiCI	$D_2O, 9.7 m$	0.033	$6.45 imes 10^{-4}$	3.79
7 Li	3/2	92.41	4.20407505	10.397 7013	-4.01	38.863797	LiCI	D ₂ O, 9.7 m	21	0.271	1.59×10^3
9 Be	3/2	100	-1.520136	-3.759666	5.288	14.051813	$BeSO_4$	$D_2O, 0.43 m$	37	1.39×10^{-2}	81.5
$^{10}\mathbf{B}$	ŝ	19.9	2.0792055	2.8746786	8.459	10.743658	$BF_3 \cdot Et_2O$	CDCl ₃	14	$3.95 imes 10^{-3}$	23.2
¹¹ B	3/2	80.1	3.4710308	8.5847044	4.059	32.083 974	$BF_3 \cdot Et_2O$	CDCl ₃	22	0.132	7.77×10^2
^{14}N		99.632	0.57100428	1.9337792	2.044	7.226317	CH ₃ NO ₂	Neat/CDCl ₃	21	1.00×10^{-3}	5.90
0 ⁷¹	5/2	0.038	-2.24077	-3.62808	-2.558	13.556457	D_2O	Neat	2.1	1.11×10^{-5}	$6.50 imes 10^{-2}$
21 Ne	3/2	0.27	-0.854376	-2.11308	10.155	7.894 296	Ne	Gas, 1.1 MPa	140	$6.65 imes 10^{-6}$	$3.91 imes 10^{-2}$
23 Na	3/2	100	2.8629811	7.0808493	10.4	26.451900	NaCl	$D_2O, 0.1 M$	140	9.27×10^{-2}	$5.45 imes 10^2$
^{25}Mg	5/2	10.00	-1.01220	-1.63887	19.94	6.121635	MgCl ₂	D ₂ O, 11 M	130	2.68×10^{-4}	1.58
27 AI	5/2	100	4.3086865	6.9762715	14.66	26.056859	$AI(NO_3)_3$	D ₂ O, 1.1 m	69	0.207	1.22×10^3
³³ S	3/2	0.76	0.8311696	2.055685	-6.78	7.676000	$(NH_4)_2SO_4$	D_2O , sat.	61	1.72×10^{-5}	0.101
³⁵ CI	3/2	75.78	1.061035	2.624 198	-8.165	9.797 909	NaCl	$D_2O, 0.1 M$	89	$3.58 imes 10^{-3}$	21.0
³⁷ CI	3/2	24.22	0.8831998	2.184368	-6.435	8.155725	NaCl	$D_2O, 0.1 M$	55	$6.59 imes 10^{-4}$	3.87
39 K	3/2	93.2581	0.50543376	1.2500608	5.85	4.666373	KCI	$D_2O, 0.1 M$	46	4.76×10^{-4}	2.79
$(^{40}\mathbf{K})$	4	0.0117	-1.4513203	-1.5542854	-7.3	5.802018	KCI	D ₂ O, 0.1 M	5.2	$6.12 imes 10^{-7}$	$3.59 imes 10^{-3}$
(^{41}K)	3/2	6.7302	0.27739609	0.68606808	7.11	2.561 305	KCI	$D_2O, 0.1 M$	67	$5.68 imes 10^{-6}$	$3.33 imes 10^{-2}$
⁴³ Ca	7/2	0.135	-1.494067	-1.803069	-4.08	6.730 029	$CaCl_2$	$D_2O, 0.1 M$	2.3	8.68×10^{-6}	$5.10 imes 10^{-2}$
^{45}Sc	7/2	100	5.3933489	6.5087973	-22.0	24.291747	$Sc(NO_3)_3$	D ₂ O, 0.06 M	66	0.302	1.78×10^3
47 Ti	5/2	7.44	-0.93294	-1.5105	30.2	5.637 534	TiCl ₄	Neat	290	$1.56 imes 10^{-4}$	0.918
49 Ti	7/2	5.41	-1.25201	-1.51095	24.7	5.639037	$TiCl_4$	Neat	83	$2.05 imes 10^{-4}$	1.20
$(\mathbf{v}^{0}\mathbf{v})$	9	0.250	3.6137570	2.6706490	21.0	9.970309	VOC1 ₃	Neat/C ₆ D ₆	17	1.39×10^{-4}	0.818
51V	7/2	99.750	5.838 0835	7.0455117	-5.2	26.302948	VOC1 ₃	Neat/C ₆ D ₆	3.7	0.383	$2.25 imes 10^3$
^{53}Cr	3/2	9.501	-0.61263	-1.5152	-15.0	5.652496	K_2CrO_4	D_2O , sat.	300	$8.63 imes 10^{-5}$	0.507
$55 \mathrm{Mn}$	5/2	100	4.1042437	6.645 2546	33.0	24.789218	$KMnO_4$	$D_2O, 0.82 m$	350	0.179	1.05×10^{3}
⁵⁹ Co	7/2	100	5.247	6.332	42.0	23.727 074	$K_3[Co(CN)_6]$	$D_2O, 0.56 m$	240	0.278	1.64×10^{3}
^{61}Ni	3/2	1.1399	-0.96827	-2.3948	16.2	8.936051	Ni(CO) ₄	Neat/C ₆ D ₆	350	4.09×10^{-5}	0.240
63Cu	3/2	69.17	2.8754908	7.1117890	-22.0	26.515473	[Cu(CH ₃ CN) ₄][ClO ₄]	CH ₃ CN, sat.	650	$6.50 imes 10^{-2}$	3.82×10^2
65Cu	3/2	30.83	3.07465	7.60435	-20.4	28.403 693	[Cu(CH ₃ CN) ₄][ClO ₄]	CH ₃ CN, sat.	550	$3.54 imes 10^{-2}$	2.08×10^2
$^{\rm e7}{ m Zn}$	5/2	4.10	1.035556	1.676688	15.0	6.256803	$Zn(NO_3)_2$	D_2O , sat.	72	$1.18 imes 10^{-4}$	0.692
(⁶⁹ Ga)	3/2	60.108	2.603405	6.438855	17.1	24.001354	$Ga(NO_3)_3$	D ₂ O, 1.1 m	390	4.19×10^{-2}	2.46×10^2
⁷¹ Ga	3/2	39.892	3.307 871	8.181171	10.7	30.496704	$Ga(NO_3)_3$	D ₂ O, 1.1 m	150	5.71×10^{-2}	$3.35 imes 10^2$
⁷³ Ge	9/2	7.73	-0.9722881	-0.9360303	-19.6	3.488315	(CH ₃) ₄ Ge	Neat	28	1.09×10^{-4}	0.642
^{75}As	3/2	100	1.858354	4.596163	31.4	17.122614	$NaAsF_6$	CD ₃ CN, 0.5 M	1300	2.54×10^{-2}	1.49×10^2

ANNOUNCEMENT

		11/7311x1795.html. in these cases.	/publications/pac/73 ould always be used	o://www.iupac.org ie unified scale sh	Full text at http://www.ext.org	1). © IUPAC 2001. reference compoun	<i>hem.</i> 73 , 1795 (200 lirectly. Some other	<i>Pure Appl. C</i> not handle d	aken from y toxic. Dc	<i>Note</i> . T ^a Highl
0.144	200	HNO ₃ /D ₂ O/H ₂ O	Bi(NO ₃) ₂	16.069 288	-51.6	4.3750	4.5444	100	9/2	^{209}Bi
$1.97 imes 10^{-4}$	2000	Neat	$(CH_3)_2Hg^a$	6.611 583	38.6	-1.788769	-0.7232483	13.18	3/2	201 Hg
2.77×10^{-5}	4000			(1.729)	54.7	0.473060	0.191271	100	3/2	¹⁹⁷ Au
2.34×10^{-5}	7500			(1.871)	75.1	0.5227	0.2113	62.7	3/2	193 Ir
1.09×10^{-5}	8900			(1.718)	81.6	0.4812	0.1946	37.3	3/2	$(^{191}$ Ir)
$3.95 imes 10^{-4}$	9800	CCl4, 0.98 M	OsO_4	7.765 400	85.6	2.10713	0.851970	16.15	3/2	^{189}Os
$8.95 imes 10^{-2}$	1.4×10^4	D ₂ O, 0.1 M	$KReO_4$	22.751 600	207.0	6.1682	3.8096	62.60	5/2	187 Re
$5.19 imes 10^{-2}$	$1.5 imes 10^4$	D ₂ O, 0.1 M	$KReO_4$	22.524 600	218.0	6.1057	3.7710	37.40	5/2	(¹⁸⁵ Re)
$3.74 imes 10^{-2}$	1.4×10^4	CH ₃ CN, sat.	$KTaCl_6$	$11.989\ 600$	317.0	3.2438	2.6879	98.988	7/2	181 Ta
7.45×10^{-5}	1.1×10^4	Ι	I	(2.517)	379.3	-0.6821	-0.7085	13.62	9/2	179 Hf
$2.61 imes 10^{-4}$	$1.5 imes 10^4$	Ι		(4.007)	336.5	1.086	0.8997	18.60	7/2	177 Hf
$6.05 imes 10^{-2}$	54	D ₂ O, 0.01 M	LaCl ₃	14.125 641	20.0	3.8083318	3.155 6770	99.910	7/2	^{139}La
8.46×10^{-5}	120	D_2O/H_2O	$LaCl_3$	13.194300	45.0	3.557 239	4.068095	0.090	. 10	^{138}La
$7.87 imes 10^{-4}$	800	$D_2O, 0.5 M$	$BaCl_2$	11.112 928	24.5	2.99295	1.21013	11.232	3/2	¹³⁷ Ba
3.30×10^{-4}	340	$D_2O, 0.5 M$	$BaCl_2$	9.934 457	16.0	2.67550	1.08178	6.592	3/2	(¹³⁵ Ba)
4.84×10^{-2}	0.016	$D_2O, 0.1 M$	CsNO ₃	13.116 142	-0.343	3.5332539	2.927 7407	100	7/2	^{133}Cs
$5.96 imes 10^{-4}$	170	Neat	$XeOF_4$	8.243 921	-11.4	2.209076	0.8931899	21.18	3/2	¹³¹ Xe
$9.54 imes 10^{-2}$	1600	$D_2O, 0.01 M$	KI Š	20.007 486	-71.0	5.389573	3.328710	100	5/2	127I
1.99×10^{-2}	330	CH ₃ CN, sat.	KSbCl ₆	12.959 217	-49.0	3.4892	2.8912	42.79	7/2	(^{123}Sb)
9.33×10^{-2}	410	CH ₃ CN, sat.	$KSbCl_6$	23.930 577	-36.0	6.4435	3.9796	57.21	5/2	121 Sb
0.338	490	D ₂ O, 0.1 M	$In(NO_3)_3$	21.912 629	81.0	5.8972	6.1256	95.71	9/2	^{115}In
1.51×10^{-2}	470	D ₂ O, 0.1 M	$In(NO_3)_3$	21.865 755	79.9	5.8845	6.1124	4.29	9/2	(^{113}In)
$2.53 imes 10^{-4}$	1400	D_2O , sat.	K_2PdCl_6	4.576 100	66.0	-1.23	-0.760	22.33	5/2	¹⁰⁵ Pd
$2.71 imes 10^{-4}$	670	$D_2O, 0.3 M$	$K_4[Ru(CN)_6]$	5.161 369	45.7	-1.377	-0.8505	17.06	5/2	101 Ru
1.44×10^{-4}	20	D ₂ O, 0.3 M	$K_4[Ru(CN)_6]$	4.605 151	7.9	-1.229	-0.7588	12.76	5/2	99 Ru
	12	D_2O	$\rm NH_4TcO_4$	22.508 326	-12.9	6.046	6.281		9/2	$^{99}\mathrm{Tc}$
$3.33 imes 10^{-4}$	210	D ₂ O, 2 M	Na_2MoO_4	6.653 695	25.5	-1.788	-1.105	9.55	5/2	(oW ₂₆)
$5.21 imes 10^{-4}$	1.5	$D_2O, 2 M$	Na_2MoO_4	6.516926	-2.2	-1.751	-1.082	15.92	5/2	^{95}Mo
0.488	76	CH ₃ CN, sat.	K[NbCl ₆]	24.476 170	-32.0	6.5674	6.8217	100	9/2	^{93}Nb
1.07×10^{-3}	66	CH_2Cl_2 , sat.	$Zr(C_5H_5)_2Cl_2$	9.296 298	-17.6	-2.49743	-1.54246	11.22	5/2	91 Zr
1.90×10^{-4}	83	$D_2O, 0.5 M$	SrCl ₂	4.333 822	33.5	-1.1639376	-1.2090236	7.00	9/2	87 Sr
4.93×10^{-2}	240	D ₂ O, 0.01 M	RbCl	32.720 454	13.35	8.786400	3.552582	27.83	3/2	87 Rb
7.67×10^{-3}	240	D ₂ O, 0.01 M	RbCI	9.654 943	27.6	2.5927050	1.601 3071	72.17	5/2	(⁸⁵ Rb)
$2.18 imes 10^{-4}$	50	Gas	Kr	$3.847\ 600$	25.9	-1.03310	-1.07311	11.49	9/2	83 Kr
4.91×10^{-2}	920	$D_2O, 0.01 M$	NaBr	27.006 518	26.2	7.249776	2.931 283	49.31	3/2	⁸¹ Br
4.03×10^{-2}	1300	$D_2O, 0.01 M$	NaBr	25.053 980	31.3	6.725616	2.719351	50.69	3/2	(^{79}Br)
	$\begin{array}{c} 4.03 \times 10^{-2} \\ 4.91 \times 10^{-2} \\ 7.67 \times 10^{-3} \\ 7.67 \times 10^{-3} \\ 7.67 \times 10^{-3} \\ 4.93 \times 10^{-2} \\ 1.07 \times 10^{-4} \\ 1.07 \times 10^{-4} \\ 3.33 \times 10^{-4} \\ 3.33 \times 10^{-4} \\ 5.21 \times 10^{-2} \\ 5.21 \times 10^{-2} \\ 5.25 \times 10^{-4} \\ 1.51 \times 10^{-2} \\ 5.25 \times 10^{-2} \\ 5.96 \times 10^{-2} \\ 5.95 \times 10^{-2} \\ 5.19 \times 10^{-5} \\ 5.10 \times 10^{-5} \\$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	NaBr D20, 0.01 M 1300 4.03 × 10 ⁻² NaBr D20, 0.01 M 920 4.91 × 10 ⁻² Kr Gas 50 2.18 × 10 ⁻³ RbCl D20, 0.01 M 240 7.67 × 10 ⁻³ RbCl D20, 0.01 M 240 7.67 × 10 ⁻³ SrCl3 D20, 0.01 M 240 7.67 × 10 ⁻³ SrCl4 D20, 0.01 M 240 7.67 × 10 ⁻³ SrCl3 D20, 0.01 M 240 7.67 × 10 ⁻³ SrCl4 D20, 0.1 M 240 1.99 × 10 ⁻⁴ NapMoO4 D20, 0.3 M 670 2.71 × 10 ⁻⁴ NapMoO4 D20, 0.1 M 470 1.51 × 10 ⁻⁴ K4[Ru(CN)6] D20, 0.1 M 470 2.53 × 10 ⁻⁴ K4[Ru(CN)6] D20, 0.1 M 470 2.53 × 10 ⁻⁴ K5PGI6 CH3CN satt 1400 2.53 × 10 ⁻⁴ K60 D20, 0.1 M 4.70 1.51 × 10 ⁻⁴ K1Ru(CN)3 D20, 0.1 M 4.70 1.51 × 10 ⁻⁴ K60 CH3CA Satt	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	32 510 271931 5255(6 313 2605318 Naff D/0 600 603 <

ANNOUNCEMENT

325

nuclides be reported on a unified scale relative to the primary standard, which is the proton resonance of tetramethylsilane in dilute solution (volume fraction $\phi < 1\%$) in chloroform. Such a scale is given the symbol Ξ (capital Greek xi) and is expressed as a ratio (generally in %) of the resonance frequency in question to that of the primary standard. However, it is recognised that it will remain common to relate shifts to standards specific to each nucleus, so to facilitate conversion to the Ξ scale, standard substances are proposed and their values of Ξ quoted for all nonradioactive NMR-active nuclides (excluding lanthanides and actinides). Tables 1 and 2 summarise such information in a simplified way (without the literature references and footnotes). However, before making use of the data on Ξ , readers should check with the additional information in the full tables in Ref. (8). Many earlier IUPAC recommendations on NMR are endorsed, but the δ -scale for nuclide-specific shifts is redefined so that the fractional "dimension" (e.g., ppm) must be specifically reported. Nine new recommendations relating to chemical shifts are made. Moreover, significant nuclear spin data, such as isotopic abundances, magnetogyric ratios, and quadrupole moments, are given in tabular form, updated from Ref. (3).

The use of a unified scale for reporting chemical shifts of five nuclides commonly studied in proteins and nucleic acids in aqueous solution has previously been the subject of a joint IUPAC/IUBMB/IUPAB recommendion (9) which is now in common use. In that case the recommended primary reference is the proton resonance of DSS [sodium 2,2-dimethyl-2-silapentane-5-sulfonate, Me₃SiCD₂CD₂CD₂SO₃Na, which is more properly called sodium 3-(trimethylsilyl)propane-1-sulfonate]. However, the TMS and DSS scales have been shown to be virtually identical (8, 9).

IUPAC is keen to see its recommendations widely publicised, and it therefore publishes these freely on the Web. Thus, Ref. (8) can be accessed at http://www.iupac.org/publications/ pac/2001/7311/7311x1795.html. The information can be copied and reproduced subject only to (a) proper acknowledgment of the original *Pure Appl. Chem.* article, and (b) retention of the copyright with IUPAC. NMR spectroscopists are urged to read the document (8) and to adhere to its recommendations.

REFERENCES

- Recommendations for the presentation of NMR data for publication in chemical journals, *Pure Appl. Chem.* 29, 627–628 (1972).
- Presentation of NMR data for publication in chemical journals, B. Conventions relating to spectra from nuclei other than protons, *Pure Appl. Chem.* 45, 217 (1976).
- I. Mills, T. Cvitaš, K. Homan, N. Kallay, and K. Kuchitsu, "Quantities, Units and Symbols in Physical Chemistry," second ed., 167 pp., Blackwell Scientific, Oxford (1993).
- C. L. Wilkins, Guidelines on nuclear magnetic resonance computerized databases, *Pure Appl. Chem.* 67, 593–596 (1995).
- P. Lampen, J. Lambert, R. J. Lancashire, R. S. McDonald, P. S. McIntyre, D. N. Rutledge, T. Fröhlich, and A. N. Davies, An extension to the JCAMP-DX standard file format, JCAMP-Dx V.5.01, *Pure Appl. Chem.* **71**, 1549–1556 (1999). Available at http://www.iupac.org/reports/ 1999/7108lampen/index.html.
- A. N. Davies, J. Lambert, R. J. Lancashire, and P. Lampen, with W. Conover, M. Frey, M. Grzonka, E. Williams, and D. Meinhart, Guidelines for the representation of pulse sequences for solution-state nuclear magnetic resonance spectrometry, *Pure Appl. Chem.* **73**, 1749–1764 (2001). Available at http://www.iupac.org/publications/pac/2001/7311/7311x1765.html.
- R. K. Harris, J. Kowalewski and S. C. de Menezes, Parameters and symbols for use in nuclear magnetic resonance, *Pure Appl. Chem.* 69, 2489–2495 (1997).
- R. K. Harris, E. D. Becker, S. M. Cabral de Menezes, R. Goodfellow, and P. Granger, NMR nomenclature: Nuclear spin properties and conventions for chemical shifts, *Pure Appl. Chem.* **73**, 1795–1818 (2001). Available at http://www.iupac.org/publications/pac/2001/7311/7311x1795. html.
- J. L. Markley, A. Bax, Y. Arata, C. W. Hilbers, R. Kaptein, B. D. Sykes, P. E. Wright, and K. Wuthrich, Recommendations for the presentation of NMR structures of proteins and nucleic acids, *Pure Appl. Chem.* **70**, 117– 142 (1998).

Robin K. Harris Edwin D. Becker